PHE503 : Advanced Optics

- Professor: Ribal Georges Sabat, rmc, CD, BSc, MSc, PhD Associate Professor of Physics Office in Sawyer 5303 Phone extension 6721 Email: sabat@rmc.ca
- Books: Pedrotti, F.L., « *Introduction to Optics »*, 3rd edition, Pearson.
 Hecht, E., « *Optics »*, 4th edition, Addison-Welsey.

Marking Scheme :	50%	Assignments
	10%	Final project presentation
	40%	Final project written paper

Assignment #1: Geometrical optics Assignment #2: Designing a Lyot-Ohman polarization filter. Assignment #3: Slab waveguide Assignment #4: Diffraction and surface plasmon resonance

For the final project, you must write a review paper (30 to 40 pages double-spaced) on the topic of your choice in optics and photonics. You must pre-approve your topic with the instructor before starting your work. A list of possible topics will be given to you in class.

"Academic misconduct, including plagiarism, cheating and other violations of the academic code of conduct, is a serious offense for which penalties have a range from formal warnings to dismissal. The RMCC regulations concerning academic misconduct, Section 23, defines plagiarism as follows: "Using the work of others and trying to pass it off as his/her own, or, among others, not crediting a source, wrong source quote, and the misuse of the quotation marks to reference a source". This also includes "Failure to acknowledge that work has already been presented elsewhere to obtain credit." All students should consult the rules published on academic misconduct in the undergraduate calendar of the Royal Military College of Canada, Section 23. "

The student is assumed to have taken a senior undergraduate course in optics (PHE/F307 or equivalent), otherwise, remedial course notes for PHE307 will be given to the student to study.

	Subject		
Review 1: Geometrical optics			
1	Matrices method for paraxial optics		
2	Matrices notation for geometrical optics		
3	Matrices examples		
Review 2: Wave optics			
4	Maxwell's equations and EM waves		
5	Poynting's theorem		
6	Irradiance		
Review	3: Polarization		
7	Types of polarizations		
8	Dichroism and birefringence		
9	Jones vectors and matrices		
Chapter 1: EM propagation in anisotropic media			
10	Dielectric tensor for anisotropic crystals		
11	Plane wave propagation in anisotropic crystals		
12	The optical index ellipsoid		
13	Pockels' linear electro-optic effect		
14	Crystals		
15	Kerr's quadratic electro-optic effect		
16	Examples for a KDP crystal		
Chapter 2: Second harmonic generation in crystals			
17	Second order susceptibility		
18	Pulsed laser beams		
19	EM formulation of non-linear interactions		
20	Optical second harmonic generation		
21	Experimental examples		
Chapter	3: Fabry-Pérot interferometer		
22	Physical description and the finesse factor		
Chapter	4: Waveguide optics		
23	Propagation condition		
24	EM treatment		
25	Gratings as waveguide couplers		
26	Finding the refractive index with coupled mode		
	theory		
Chapter 5: Surface Plasmon Resonance			
27	Metal optics		

Course Outline

28	Plasmon-polaritons	
29	Classification of materials	
30	Drude model for dielectric permittivity	
31	Dispersion relation of plasmons	
32	Propagation and penetration lengths	
33	Surface plasmon excitation conditions	
Chapter 6: Introduction to Fourier optics (If time permits)		
34	Fourier transforms	
35	Applications of Fourier transforms	
36	Convolution theorem and its applications	